Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications por Laura Igual, Santi Segui, Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Danti, Lluis Garrido

June 16, 2019

Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications por Laura Igual, Santi Segui, Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Danti, Lluis Garrido

Titulo del libro: Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications

Autor: Laura Igual, Santi Segui, Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Danti, Lluis Garrido

Fecha de lanzamiento: March 2, 2017

ISBN: 3319500163

Editor: Springer

Obtenga el libro de Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications de Laura Igual, Santi Segui, Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Danti, Lluis Garrido en formato PDF o EPUB. Puedes leer cualquier libro en línea o guardarlo en tus dispositivos. Cualquier libro está disponible para descargar sin necesidad de gastar dinero.

Laura Igual, Santi Segui, Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Danti, Lluis Garrido con Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.